[4910-13-P]

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

[Docket No. FAA-2014-0648; Directorate Identifier 2013-NM-136-AD]

RIN 2120-AA64

Airworthiness Directives; Airbus Airplanes

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed rulemaking (NPRM).

SUMMARY: We propose to supersede Airworthiness Directive (AD) 2010-06-04, for certain Airbus Model A300 B2-1C, B2-203, B2K-3C, B4-103, B4-203, B4-2C airplanes; Model A310 series airplanes; Model A300 B4-600 series airplanes; and Model A300 B4-600R series airplanes. AD 2010-06-04 currently requires repetitive inspections to detect cracks of the pylon side panels (upper section) at rib 8; and corrective actions if necessary. Since we issued AD 2010-06-04, fleet survey and updated fatigue and damage tolerance analyses were done. We have determined that reduced compliance times are necessary. This proposed AD would continue to require repetitive inspections for cracking of the pylons 1 and 2 side panels (upper section) at rib 8 with reduced compliance times, and corrective actions if necessary. This proposed AD would also require repetitive post-repair and post-modification inspections and repair if necessary. This proposed AD would also remove certain airplanes having a certain modification from the applicability. We are proposing this AD to detect and correct cracking of pylon side panels (upper section) at rib 8, which could lead to reduced structural integrity of the

pylon primary structure, which could cause detachment of the engine from the fuselage. **DATES:** We must receive comments on this proposed AD by [INSERT DATE 45

DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. **ADDRESSES:** You may send comments by any of the following methods:

- Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the instructions for submitting comments.
 - Fax: (202) 493-2251.
- Mail: U.S. Department of Transportation, Docket Operations, M-30, West
 Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC
 20590.
- Hand Delivery: U.S. Department of Transportation, Docket Operations, M-30,
 West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE.,
 Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

For service information identified in this proposed AD, contact Airbus SAS, Airworthiness Office – EAW, 1 Rond Point Maurice Bellonte, 31707 Blagnac Cedex, France; telephone +33 5 61 93 36 96; fax +33 5 61 93 44 51; email account.airworth-eas@airbus.com; Internet http://www.airbus.com. You may view this referenced service information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, WA. For information on the availability of this material at the FAA, call 425-227-1221.

Examining the AD Docket

You may examine the AD docket on the Internet at http://www.regulations.gov; or in person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this proposed AD, the regulatory evaluation, any comments received, and other information. The street address for the Docket Office (telephone (800) 647-5527) is in the ADDRESSES section.

Comments will be available in the AD docket shortly after receipt.

FOR FURTHER INFORMATION CONTACT: Dan Rodina, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue SW., Renton, WA 98057-3356; telephone (425) 227-2125; fax (425) 227-1149.

SUPPLEMENTARY INFORMATION:

Comments Invited

We invite you to send any written relevant data, views, or arguments about this proposed AD. Send your comments to an address listed under the ADDRESSES section. Include "Docket No. FAA-2014-0648; Directorate Identifier 2013-NM-136-AD" at the beginning of your comments. We specifically invite comments on the overall regulatory, economic, environmental, and energy aspects of this proposed AD. We will consider all comments received by the closing date and may amend this proposed AD based on those comments.

We will post all comments we receive, without change, to http://www.regulations.gov, including any personal information you provide. We will also post a report summarizing each substantive verbal contact we receive about this proposed AD.

Discussion

On March 4, 2010, we issued AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572). AD 2010-06-04 requires actions intended to address an unsafe condition on Airbus Model A300 B2-1C, B2-203, B2K-3C, B4-103, B4-203, B4-2C airplanes; Model A310 series airplanes; Model A300 B4-600 series airplanes; and Model A300 B4-600R series airplanes.

Since we issued AD 2010-06-04, fleet survey and updated fatigue and damage tolerance analyses were done. We have determined that reduced compliance times are necessary. The European Aviation Safety Agency (EASA), which is the Technical Agent for the Member States of the European Community, has issued EASA Airworthiness Directive 2013-0136R1, dated July 30, 2013 (referred to after this as the Mandatory Continuing Airworthiness Information, or "the MCAI"), to correct an unsafe condition for the specified products. The MCAI states:

Cracks were found on pylon side panels (upper section) at rib 8 on Airbus A300, A310 and A300-600 aeroplanes equipped with General Electric engines. Investigation of these findings indicated that this problem was likely to also affect aeroplanes of this type design with other engine installations.

This condition, if not detected and corrected, could lead to reduced strength of the pylon primary structure, possibly resulting in pylon structural failure and in-flight loss of an engine.

Prompted by these findings, EASA issued AD 2008-0181 [http://www.regulations.gov/#!documentDetail;D=FAA-

2009-0789-0002] [which corresponds to FAA AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572)] to require repetitive detailed visual inspections [of the pylon side panels (upper section) at rib 8] and, depending on aeroplane configuration and/or findings, the accomplishment of applicable corrective action(s).

Since that [EASA] AD was issued, a fleet survey and updated Fatigue and Damage Tolerance analyses have been performed in order to substantiate the second A300-600 Extended Service Goal (ESG2) exercise. The results of these analyses have shown that the risk for these aeroplanes is higher than initially determined and consequently, the threshold and interval must be reduced to allow timely detection of these cracks and the accomplishment of applicable correction action(s).

EASA issued AD 2013-0136

[http://ad.easa.europa.eu/ad/2013-0136R1] which retained the requirements of EASA AD 2008-0181, which was superseded, and required the inspections to be accomplished within reduced thresholds and intervals.

After publication of EASA AD 2013-0136, it appeared that Airbus Mod 03599 had no influence on the aeroplane configuration affected by this AD. At the same time Airbus Service Bulletin (SB) A300-54-6015 Revision 3 was not integrally taken into account as this revision no longer identifies configuration 3 aeroplanes.

For the reasons described above, EASA 2013-0136 is revised to exclude Airbus Mod 03599 from the applicability and to delete the reference to the configuration 3 for A300-600 aeroplanes.

Corrective actions include doing a repair. This proposed AD also provides an optional modification (installing a doubler), which would terminate the repetitive inspections.

Required actions also include repetitive post-repair and post-modification inspections and repair if necessary.

Depending on airplane configuration: Initial compliance times range from 4,800 flight cycles or 24,100 flight hours, and 9,700 flight cycles or 19,400 flight hours. Initial post-modification and post-repair inspection compliance times range from 7,200 flight cycles or 36,400 flight hours, and 10,400 flight cycles or 50,800 flight hours, depending on inspection type. Repetitive intervals range from 2,600 flight cycles or 13,000 flight hours, and 6,700 flight cycles or 18,700 flight hours. You may examine the MCAI in the AD docket on the Internet at http://www.regulations.gov by searching for and locating it in Docket No. FAA-2014-0648.

Relevant Service Information

Airbus has issued the Service Bulletins listed below. The actions described in this service information are intended to correct the unsafe condition identified in the MCAI.

- Airbus Service Bulletin A300-54-0075, Revision 03, dated March 27, 2013.
- Airbus Service Bulletin A300-54-6015, Revision 03, dated April 11, 2013.
- Airbus Service Bulletin A310-54-2018, Revision 03, dated April 11, 2013.
- Airbus Service Bulletin A300-54-0081, dated August 11, 1993.
- Airbus Service Bulletin A300-54-6021, Revision 02, dated May 21, 2008.
- Airbus Service Bulletin A310-54-2024, dated August 11, 1993.

FAA's Determination and Requirements of this Proposed AD

This product has been approved by the aviation authority of another country, and is approved for operation in the United States. Pursuant to our bilateral agreement with the State of Design Authority, we have been notified of the unsafe condition described in the MCAI and service information referenced above. We are proposing this AD because we evaluated all pertinent information and determined an unsafe condition exists and is likely to exist or develop on other products of the same type design.

Differences Between this Proposed AD and the MCAI or Service Information

Although the MCAI or service information allows further flight after cracks are found during compliance with the required actions of this proposed AD, this proposed AD would require that you repair any cracking before further flight.

Changes to this NPRM

Table 2, "Service Bulletins," in AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010), has been converted to text in paragraph (g)(9) of this AD.

Table 3, "Previous Service Information," in AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010), has been converted to text in paragraph (m)(1) of this AD.

Costs of Compliance

We estimate that this proposed AD affects 156 airplanes of U.S. registry. We estimate the following costs to comply with this proposed AD:

Estimated costs

Action	Labor cost	Parts cost	Cost per product	Cost on U.S. operators
Inspection [retained actions from AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572)]	4 work-hours X \$85 per hour = \$340	\$0	\$340	\$53,040
Inspection [new proposed actions]	24 work-hours X \$85 per hour = \$2,040 per inspection cycle	\$0	\$2,040 per inspection cycle	\$318,240 per inspection cycle

We estimate the following costs to do any necessary repairs that would be required based on the results of the proposed inspection. We have no way of determining the number of aircraft that might need these repairs:

On-condition costs

Action	Labor cost	Parts cost	Cost per product
Repair	58 work-hours <i>X</i> \$85 per hour = \$4,930	\$3,910	\$8,840

Action	Labor cost	Parts cost	Cost per product
Optional Modification	Up to 48 work- hours X \$85 per hour = \$4,080	Up to \$1,026	Up to \$5,106

Authority for This Rulemaking

Title 49 of the United States Code specifies the FAA's authority to issue rules on aviation safety. Subtitle I, section 106, describes the authority of the FAA Administrator. "Subtitle VII: Aviation Programs," describes in more detail the scope of the Agency's authority.

We are issuing this rulemaking under the authority described in "Subtitle VII, Part A, Subpart III, Section 44701: General requirements." Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds necessary for safety in air commerce. This regulation is within the scope of that authority because it addresses an unsafe condition that is likely to exist or develop on products identified in this rulemaking action.

Regulatory Findings

We determined that this proposed AD would not have federalism implications under Executive Order 13132. This proposed AD would not have a substantial direct effect on the States, on the relationship between the national Government and the States, or on the distribution of power and responsibilities among the various levels of government.

For the reasons discussed above, I certify this proposed regulation:

- 1. Is not a "significant regulatory action" under Executive Order 12866;
- 2. Is not a "significant rule" under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979);
 - 3. Will not affect intrastate aviation in Alaska; and
- 4. Will not have a significant economic impact, positive or negative, on a substantial number of small entities under the criteria of the Regulatory Flexibility Act.

List of Subjects in 14 CFR Part 39

Air transportation, Aircraft, Aviation safety, Incorporation by reference, Safety.

The Proposed Amendment

Accordingly, under the authority delegated to me by the Administrator, the FAA proposes to amend 14 CFR part 39 as follows:

PART 39 - AIRWORTHINESS DIRECTIVES

1. The authority citation for part 39 continues to read as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701.

§ 39.13 [Amended]

2. Amend § 39.13 by removing Airworthiness Directive (AD) 2010-06-04,
Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572), and adding the following new AD:

Airbus: Docket No. FAA-2014-0648; Directorate Identifier 2013-NM-136-AD.

(a) Comments Due Date

We must receive comments by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].

(b) Affected ADs

This AD replaces AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572).

(c) Applicability

This AD applies to the airplanes identified in paragraphs (c)(1), (c)(2), and (c)(3) of this AD, certificated in any category.

- (1) Airbus Model A300 B2-1C, B2-203, B2K-3C, B4-103, B4-203, and B4-2C airplanes, on which Airbus Modification 02434 has been embodied in production.
- (2) Airbus Model A310-203, -204, -221, -222, -304, -322, -324, and -325 airplanes, except those on which Airbus Modification 10432 has been embodied in production.
- (3) Airbus Model A300 B4-601, B4-603, B4-605R, B4-620, B4-622, and B4-622R airplanes, except those on which Airbus Modification 10432 has been embodied in production.

(d) Subject

Air Transport Association (ATA) of America Code 54, Nacelles/Pylons.

(e) Reason

This AD was prompted by reports of cracks found on pylon side panels at rib 8 and a fleet survey and updated fatigue and damage tolerance analyses. We are issuing this AD to detect and correct cracking of pylon side panels (upper section) at rib 8, which could lead to reduced structural integrity of the pylon primary structure, which could cause detachment of the engine from the fuselage.

(f) Compliance

Comply with this AD within the compliance times specified, unless already done.

(g) Retained Actions and Compliance with Revised Service Information

This paragraph restates the requirements of paragraph (f) of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572), with revised service information. Accomplishing the initial inspection required by paragraph (h) of this AD terminates the requirements of this paragraph.

(1) For Configuration 01 airplanes as identified in the applicable service bulletin identified in paragraph (g)(9) of this AD: At the applicable time specified in table 1 to paragraph (g) of this AD, except as required by paragraphs (g)(2) and (g)(3) of this AD, perform a detailed visual inspection of the pylons 1 and 2 side panels (upper section) at rib 8, in accordance with paragraph 3.B. of the Accomplishment Instructions of the applicable service bulletin identified in paragraph (g)(9)(i) through (g)(9)(iii) of this AD or paragraphs (k)(1), (k)(2), or (k)(3) of this AD. Repeat the inspection at the time specified in table 1 to paragraph (g) of this AD.

Table 1 to Paragraph (g) of this AD – Compliance Times for Configuration 1 Airplanes

	That have	Inspect before the	Or within –	And repeat the
For Model –	accumulated –	accumulation of –	Of within –	inspection at intervals not to
		Whichever oc	ccurs later	exceed –
A300 B2-1C, B2-203, and B2K-3C airplanes	≤17,500 total flight cycles¹	5,350 total flight cycles	2,500 flight cycles ²	4,300 flight cycles.
A300 B2-1C, B2-203, and B2K-3C airplanes	>17,500 total flight cycles ¹	20,000 total flight cycles or 40,000 total flight hours, whichever occurs first	250 flight cycles ²	4,300 flight cycles.
A300 B4-103, B4-203, and B4-2C airplanes	≤18,000 total flight cycles¹	5,350 total flight cycles	2,000 flight cycles ²	4,300 flight cycles.
A300 B4-103, B4-203, and B4-2C airplanes	>18,000 total flight cycles ¹	20,000 total flight cycles or 40,000 total flight hours, whichever occurs first	250 flight cycles ²	4,300 flight cycles.
A300 B4-601, B4-603, B4-605R, B4-620, B4-622, and B4-622R airplanes	≤18,000 total flight cycles¹	4,200 total flight cycles	2,000 flight cycles ²	3,600 flight cycles.
A300 B4-601, B4-603, B4-605R, B4-620, B4-622, and B4-622R airplanes	>18,000 total flight cycles ¹	20,000 total flight cycles or 40,000 total flight hours, whichever occurs first	250 flight cycles ²	3,600 flight cycles.

For Model –	That have accumulated –	Inspect before the accumulation of –	Or within –	And repeat the inspection at
roi wiodei –	accumulated –	Whichever occurs later		intervals not to exceed –
A310-200 airplanes with GE CF6-80A3 or Pratt & Whitney engines	≤18,000 total flight cycles¹	9,700 total flight cycles or 19,400 total flight hours, whichever occurs first	1,500 flight cycles ²	6,700 flight cycles or 13,400 flight hours, whichever occurs first.
A310-200 airplanes with GE CF6-80A3 or Pratt & Whitney engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	6,700 flight cycles or 13,400 flight hours, whichever occurs first.
A310-200 airplanes with GE CF6-80C2 engines	≤18,000 total flight cycles¹	7,800 total flight cycles or 15,600 total flight hours, whichever occurs first	1,500 flight cycles ²	5,800 flight cycles or 11,600 flight hours, whichever occurs first.
A310-200 airplanes with GE CF6-80C2 engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	5,800 flight cycles or 11,600 flight hours, whichever occurs first.
A310-300 SR ³ airplanes with Pratt & Whitney JT9D engines	≤18,000 total flight cycles¹	8,600 total flight cycles or 24,000 total flight hours, whichever occurs first	1,500 flight cycles ²	6,700 flight cycles or 18,700 flight hours, whichever occurs first.
A310-300 SR ³ airplanes with Pratt & Whitney JT9D engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	6,700 flight cycles or 18,700 flight hours, whichever occurs first.

For Model –	That have accumulated –	Inspect before the accumulation of –	Or within –	And repeat the inspection at
		Whichever occurs later		intervals not to exceed –
A310-300 SR ³ airplanes with GE engines	≤18,000 total flight cycles¹	7,000 total flight cycles or 19,600 total flight hours, whichever occurs first	1,500 flight cycles ²	5,700 flight cycles or 15,900 flight hours, whichever occurs first.
A310-300 SR ³ airplanes with GE engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	5,700 flight cycles or 15,900 flight hours, whichever occurs first.
A310-300 SR ³ airplanes with Pratt & Whitney 4000 engines	≤18,000 total flight cycles¹	7,000 total flight cycles or 19,600 total flight hours, whichever occurs first	1,500 flight cycles ²	5,800 flight cycles or 16,200 flight hours, whichever occurs first.
A310-300 SR ³ airplanes with Pratt & Whitney 4000 engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	5,800 flight cycles or 16,200 flight hours, whichever occurs first.
A310-300 LR ⁴ airplanes with Pratt & Whitney JT9D engines	≤18,000 total flight cycles¹	5,900 total flight cycles or 29,500 total flight hours, whichever occurs first	1,500 flight cycles ²	6,000 flight cycles or 30,300 flight hours, whichever occurs first.
A310-300 LR ⁴ airplanes with Pratt & Whitney JT9D engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	6,000 flight cycles or 30,300 flight hours, whichever occurs first.

For Model –	That have accumulated –	Inspect before the accumulation of –	Or within –	And repeat the inspection at
1 of Wiodel	accumulated	Whichever occurs later		intervals not to exceed –
A310-300 LR ⁴ airplanes with GE engines	≤18,000 total flight cycles¹	4,800 total flight cycles or 24,100 total flight hours, whichever occurs first	1,500 flight cycles ²	5,100 flight cycles or 25,500 flight hours, whichever occurs first.
A310-300 LR ⁴ airplanes with GE engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	5,100 flight cycles or 25,500 flight hours, whichever occurs first.
A310-300 LR ⁴ airplanes with Pratt & Whitney 4000 engines	≤18,000 total flight cycles¹	4,800 total flight cycles or 24,000 total flight hours, whichever occurs first	1,500 flight cycles ²	5,200 flight cycles or 26,300 flight hours, whichever occurs first.
A310-300 LR ⁴ airplanes with Pratt & Whitney 4000 engines	>18,000 total flight cycles ¹	19,500 total flight cycles or 55,500 total flight hours, whichever occurs first	250 flight cycles ²	5,200 flight cycles or 26,300 flight hours, whichever occurs first.

¹As of April 15, 2010 (the effective date of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010))

²After April 15, 2010 (the effective date of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010))

³ "SR" applies to airplanes with average flights less than 4 flight hours.

⁴ "LR" refers to airplanes with average flights of 4 or more flight hours.

- (2) For Model A300 and A300-600 airplanes that have accumulated more than 40,000 total flight hours as of April 15, 2010 (the effective date of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010)): Within 250 flight cycles after April 15, 2010, do the actions specified in paragraph (g)(1) of this AD.
- (3) For Model A310 airplanes that have accumulated more than 55,500 total flight hours as of April 15, 2010 (the effective date of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010)): Within 250 flight cycles after April 15, 2010, do the actions specified in paragraph (g)(1) of this AD.
- (4) For Configuration 01 airplanes, as identified in the applicable service bulletin identified in paragraph (g)(9) of this AD: If a crack is found during any inspection required by paragraph (g)(1) of this AD, before further flight, install a doubler, in accordance with paragraph 3.C. of the Accomplishment Instructions of the applicable service bulletin identified in paragraph (g)(9) of this AD.
- (5) For Configuration 02 airplanes, as identified in the applicable service bulletin identified in paragraph (g)(9) of this AD: At the applicable time specified in paragraph 1.E.(2) of the applicable service bulletin identified in paragraphs (g)(9)(i) through (g)(9)(iii) of this AD, or within 250 flight cycles after April 15, 2010 (the effective date of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010)), whichever occurs later, perform a detailed visual inspection of the pylons 1 and 2 side panels (upper section) at rib 8, in accordance with paragraph 3.B. of the Accomplishment Instructions of the applicable service bulletin identified in paragraph (g)(9) of this AD.

- (6) For Configuration 03 airplanes, as identified in the applicable service bulletin identified in paragraph (g)(9) of this AD: At the applicable time specified in paragraph 1.E.(2) of the applicable service bulletin identified in paragraphs (g)(9)(i) through (g)(9)(iii) of this AD, or within 250 flight cycles after April 15, 2010 (the effective date of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010)), whichever occurs later, perform a detailed visual inspection, and a high frequency eddy current inspection as applicable, of the pylons 1 and 2 side panels (upper section) at rib 8, in accordance with paragraph 3.B. of the Accomplishment Instructions of the applicable service bulletin identified in paragraph (g)(9) of this AD.
- (7) For Configuration 02 and 03 airplanes, as identified in the applicable service bulletin identified in paragraph (g)(9) of this AD: If a crack is found during any inspection required by paragraph (g)(1), (g)(5), or (g)(6) of this AD, before further flight, repair in accordance with paragraph 3.C. of the Accomplishment Instructions of the applicable service bulletin identified in paragraph (g)(9) of this AD.
- (8) For all airplanes, except those in Configuration 01, as identified in the applicable service bulletin identified in paragraph (g)(9) of this AD: Repeat the inspection specified in paragraph (g)(1), (g)(5), or (g)(6) of this AD, as applicable, at the intervals specified in paragraph 1.E.(2) of the applicable service bulletin identified in paragraph (g)(9)(i) through (g)(9)(iii) of this AD.
- (9) For the actions specified in paragraph (g) of this AD, use the applicable service bulletin identified in paragraphs (g)(9)(i) through (g)(9)(iii) of this AD, or paragraph (k)(1), (k)(2), or (k)(3) of this AD.

- (i) Airbus Mandatory Service Bulletin A300-54-0075, excluding Appendices 1, 2, and 3, Revision 02, dated June 26, 2008 (For Model A300 B2-1C, B2-203, B2K-3C, B4-103, B4-203, and B4-2C airplanes).
- (ii) Airbus Mandatory Service Bulletin A300-54-6015, excluding Appendices 1, 2, and 3, Revision 02, dated June 26, 2008 (For Model A300 B4-601, B4-603, B4-605R, B4-620, B4-622, and B4-622R airplanes).
- (iii) Airbus Mandatory Service Bulletin A310-54-2018, excluding Appendices 1,2, and 3, Revision 02, dated June 26, 2008 (for Model A310 series airplanes).

(h) New Repetitive Inspections and Repair

Except as required by paragraphs (l)(1) and (l)(2) of this AD, at the applicable times specified in paragraph 1.E., "Compliance," of the applicable service bulletin identified in paragraph (k) of this AD: Do a detailed inspection for cracking of the pylons 1 and 2 side panels (upper section) at rib 8, in accordance with the Accomplishment Instructions of the applicable service bulletin identified in paragraph (k) of this AD. Accomplishing the inspection required by this paragraph terminates the requirements of paragraph (g)(1) through (g)(9) of this AD.

(1) If any cracking is found, before further flight, do a high frequency eddy current (HFEC) inspection to confirm the crack, in accordance with the Accomplishment Instructions of the applicable service bulletin identified in paragraph (k) of this AD.

- (i) If any crack indication is confirmed during the HFEC inspection specified in paragraph (h)(1) of this AD, and the crack is less than 20 mm, before further flight, repair, in accordance with the Accomplishment Instructions of the applicable service bulletin identified in paragraph (k) of this AD.
- (ii) If any crack indication is confirmed during the HFEC inspection specified in paragraph (h)(1) of this AD and the crack is greater than or equal to 20 mm, before further flight, repair using a method approved by the Manager, International Branch, ANM-116, Transport Airplane Directorate, FAA; or the European Aviation Safety Agency (EASA); or Airbus's EASA Design Organization Approval (DOA).
- (2) If no cracking is found, or if crack indication is not confirmed during the HFEC inspection required by paragraph (h)(1) of this AD, at the applicable interval specified in paragraph 1.E., "Compliance," of the applicable service bulletin identified in paragraph (k) of this AD, repeat the inspection specified in paragraph (h) of this AD, in accordance with the Accomplishment Instructions of the applicable service bulletin identified in paragraph (k) of this AD until the modification specified in paragraph (i) is done.

(i) Optional Modification

Modifying by installing a doubler on the left hand (LH) pylon 1 and right hand (RH) pylon 2, on pylon side panels (upper section), at rib 8, in accordance with the Accomplishment Instructions of Airbus Service Bulletin A300-54-0081, dated August 11, 1993; A310-54-2024, dated August 11, 1993; or A300-54-6021, Revision 02,

dated May 21, 2008; as applicable, terminates the repetitive inspections specified in paragraph (h)(2) of this AD.

(j) Post-Modification and Post-Repair Repetitive Inspections and Corrective Actions

For airplanes on which the modification has been done as specified in paragraph (i) of this AD, and airplanes on which the repair has been done as specified in paragraph (h) of this AD: At the applicable compliance time specified in paragraph 1.E., Compliance," of the applicable service bulletin identified in paragraph (k) of this AD, do the post-modification and post-repair detailed inspections for cracking, as applicable, of the LH and RH side panels of pylons 1 and 2, in accordance with the applicable service bulletins identified in paragraph (k) of this AD. Repeat the inspections thereafter at the times specified in paragraph 1.E., "Compliance" of the applicable service bulletin specified in paragraph (k) of this AD. If any cracking is found, before further flight, repair using a method approved by the Manager, International Branch, ANM-116, Transport Airplane Directorate, FAA; or EASA; or Airbus's EASA Design Organization Approval (DOA). This repair is not a terminating action for the repetitive inspections required by this paragraph.

(k) New Service Information

Use the applicable service bulletin identified in paragraphs (k)(1) through (k)(3) of this AD to accomplish the inspections required by paragraphs (h) and (j) of this AD.

(1) Airbus Mandatory Service Bulletin A300-54-0075, Revision 03, dated March 27, 2013 (for Model A300 B2-1C, B2-203, B2K-3C, B4-103, B4-203, and B4-2C airplanes).

- (2) Airbus Mandatory Service Bulletin A310-54-2018, Revision 03, dated April 11, 2013 (for Model A310-203, -204, -221, -222, -304, -322, -324, and -325 airplanes).
- (3) Airbus Mandatory Service Bulletin A300-54-6015, Revision 03, dated April 11, 2013 (for Model A300 B4-601, B4-603, B4-605R, B4-620, B4-622, and B4-622R airplanes).

(l) Exceptions

- (1) Where the compliance time column in the tables in paragraph 1.E., "Compliance," of the applicable service bulletin identified in paragraph (k) of this AD specifies a "threshold" in FC or FH, and does not specify from repair or service bulletin embodiment, those compliance times are total flight cycles and total flight hours.
- (2) Where the tables in paragraph 1.E., "Compliance," of the applicable service bulletin specified in paragraph (k) of this AD specifies "grace period after the receipt of the service bulletin," this AD requires compliance within the corresponding compliance time after the effective date of this AD.

(m) Credit for Previous Actions

(1) This paragraph restates the credit provided by paragraph (f)(9) of AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010) with no changes. This paragraph provides credit for initial inspections required by paragraph (g) of this AD, if those actions were performed prior to April 15, 2010 (the effective date of AD 2010-06-04) using the applicable service bulletins specified in paragraphs (m)(1)(i) through (m)(1)(vi) of this AD, which are not incorporated by reference in this AD.

- (i) Airbus Service Bulletin A300-54-0075, dated August 11, 1993.
- (ii) Airbus Service Bulletin A300-54-0075, Revision 01, dated November 9, 2007.
- (iii) Airbus Service Bulletin A300-54-6015, dated August 11, 1993.
- (iv) Airbus Service Bulletin A300-54-6015, Revision 01, dated November 9, 2007.
 - (v) Airbus Service Bulletin A310-54-2018, dated August 11, 1993.
- (vi) Airbus Service Bulletin A310-54-2018, Revision 01, dated November 16,2007.
- (2) This paragraph provides credit for initial inspections required by paragraph (h) of this AD, if those actions were performed before the effective date of this AD using the applicable service bulletins specified in paragraphs (m)(2)(i) through (m)(2)(vi) of this AD.
- (i) Airbus Service Bulletin A300-54-0075, dated August 11, 1993, which is not incorporated by reference in this AD.
- (ii) Airbus Service Bulletin A300-54-0075, Revision 01, dated November 9, 2007, which is not incorporated by reference in this AD.
- (iii) Airbus Service Bulletin A300-54-0075, Revision 02, dated June 26, 2008, which is incorporated by reference in this AD.
- (iv) Airbus Service Bulletin A300-54-6015, dated August 11, 1993, which is not incorporated by reference in this AD.
- (v) Airbus Service Bulletin A300-54-6015, Revision 01, dated November 9, 2007, which is not incorporated by reference in this AD.

- (vi) Airbus Service Bulletin A300-54-6015, Revision 02, dated June 26, 2008, which is incorporated by reference in this AD.
- (vii) Airbus Service Bulletin A310-54-2018, dated August 11, 1993, which is not incorporated by reference in this AD.
- (viii) Airbus Service Bulletin A310-54-2018, Revision 01, dated November 16, 2007, which is not incorporated by reference in this AD.
- (ix) Airbus Service Bulletin A310-54-2018, Revision 02, dated June 26, 2008, which is incorporated by reference in this AD.
- (3) This paragraph provides credit for initial inspections required by paragraph (i) of this AD, if those actions were performed before the effective date of this AD using the applicable service bulletins specified in paragraphs (m)(3)(i) and (m)(3)(ii) of this AD.
 - (i) Airbus Service Bulletin A300-54-6021, dated August 11, 1993.
- (ii) Airbus Service Bulletin A300-54-6021, Revision 01, dated November 16, 2007.

(n) Other FAA AD Provisions

The following provisions also apply to this AD:

(1) Alternative Methods of Compliance (AMOCs): The Manager, International Branch, ANM-116, FAA, has the authority to approve AMOCs for this AD, if requested using the procedures found in 14 CFR 39.19. In accordance with 14 CFR 39.19, send your request to your principal inspector or local Flight Standards District Office, as appropriate. If sending information directly to the International Branch, send it to ATTN: Dan Rodina, Aerospace Engineer, International Branch, ANM-116, Transport

Airplane Directorate, FAA, 1601 Lind Avenue SW., Renton, WA 98057-3356; telephone (425) 227-2125; fax (425) 227-1149. Information may be emailed to: 9-ANM-116-AMOC-REQUESTS@faa.gov.

- (i) Before using any approved AMOC, notify your appropriate principal inspector, or lacking a principal inspector, the manager of the local flight standards district office/certificate holding district office. The AMOC approval letter must specifically reference this AD.
- (ii) AMOCs approved previously for AD 2010-06-04, Amendment 39-16228 (75 FR 11428, March 11, 2010); corrected May 4, 2010 (75 FR 23572); are approved as AMOCs for the corresponding provisions of this AD.
- (2) Contacting the Manufacturer: As of the effective date of this AD, for any requirement in this AD to obtain corrective actions from a manufacturer, the action must be accomplished using a method approved by the Manager, International Branch, ANM-116, Transport Airplane Directorate, FAA; or EASA; or Airbus's EASA Design Organization Approval (DOA). If approved by the DOA, the approval must include the DOA-authorized signature.

(o) Related Information

(1) Refer to Mandatory Continuing Airworthiness Information (MCAI) EASA Airworthiness Directive 2013-0136R1, dated July 30, 2013, for related information. This MCAI may be found in the AD docket on the Internet at http://www.regulations.gov by searching for and locating it in Docket No. FAA-2014-0648.

(2) For service information identified in this AD, contact Airbus SAS,

Airworthiness Office – EAW, 1 Rond Point Maurice Bellonte, 31707 Blagnac Cedex,

France; telephone +33 5 61 93 36 96; fax +33 5 61 93 44 51; email

account.airworth-eas@airbus.com; Internet http://www.airbus.com. You may view this

referenced service information at the FAA, Transport Airplane Directorate, 1601 Lind

Avenue SW., Renton, WA. For information on the availability of this material at the

FAA, call 425-227-1221.

Issued in Renton, Washington, on September 12, 2014.

Jeffrey E. Duven,

Manager,

Transport Airplane Directorate,

Aircraft Certification Service.

[FR Doc. 2014-22467 Filed 09/19/2014 at 8:45 am; Publication Date: 09/22/2014]

26